Package index
-
load_data()
- Load Processed Countdown 2030 Data from RDS or DTA File
-
load_excel_data()
- Load and Clean Countdown 2030 Excel Data
-
load_un_estimates()
- Load UN Estimates
-
load_wuenic_data()
- Load WUENIC Data
-
load_survey_data()
- Load and Process Country-Specific Survey Data
-
load_equity_data()
- Load and Process Country-Specific Survey Equity Data
-
save_data()
- Save Processed Countdown 2030 Data to File
-
save_dhis2_excel()
- Save DHIS2 Data to an Excel Workbook
-
save_dhis2_master_data()
- Create a Master Dataset from DHIS2 Data
-
get_dhis2_hfd()
- Retrieve DHIS2 Health Facility Data
Data Quality Assessment
To check the completeness and consistency of data, ensuring its readiness for analysis.
-
calculate_reporting_rate()
- Reporting Rate Summary by Administrative Level
-
calculate_district_reporting_rate()
- District-Level Reporting Rates by Year
-
plot(<cd_reporting_rate>)
- Plot Reporting Rates for Subnational Units
-
plot(<cd_district_reporting_rate>)
- Plot District Reporting Rate Summary
-
tbl_sum(<cd_reporting_rate>)
- Summary for Average Reporting Rates by Year
-
tbl_sum(<cd_district_reporting_rate>)
- Summary for District-Level Reporting Rates by Year
-
calculate_completeness_summary()
- Calculate Percentage of Non-Missing Values by Year
-
calculate_district_completeness_summary()
- Check for Missing Values by District and Year
-
tbl_sum(<cd_completeness_summary>)
- Summary for
cd_completeness_summary
-
tbl_sum(<cd_district_completeness_summary>)
- Summary for
cd_district_completeness_summary
-
plot_comparison()
plot_comparison_anc1_penta1()
plot_comparison_penta1_penta3()
plot_comparison_opv1_opv3()
- Internal Consistency Plot Functions for Indicator Comparisons
-
plot_comparison(<cd_data>)
- Plot Comparison with Linear Fit and R-squared
-
calculate_outliers_summary()
- Calculate Outliers Summary by Year
-
calculate_district_outlier_summary()
- Calculate District-Level Outliers Summary by Year
-
list_outlier_units()
- Identify Outlier Units by Month for a Given Indicator
-
plot(<cd_outlier>)
- Plot Outlier Detection Summary
-
plot(<cd_outlier_list>)
- Plot Outlier Series for a Single Region and Indicator
-
tbl_sum(<cd_outliers_summary>)
- Summary for
cd_outliers_summary
-
tbl_sum(<cd_district_outliers_summary>)
- Summary for
cd_district_outliers_summary
-
calculate_ratios_summary()
- Calculate Yearly Indicator Ratios Summary with Expected Ratios
-
calculate_district_ratios_summary()
- Calculate District Adequacy Summary
-
plot(<cd_ratios_summary>)
- Plot Ratios Summary for Indicator Ratios Summary Object
-
tbl_sum(<cd_ratios_summary>)
- Summary for
cd_ratios_summary
Object
-
tbl_sum(<cd_district_ratios_summary>)
- Summary for
cd_district_ratios_summary
Object
-
calculate_overall_score()
- Calculate Overall Quality Score for Data Quality Metrics
Data Adjustment
To adjust for issues like incomplete reporting and extreme outliers, improving data quality
-
filter_out_years()
- Filter Dataset by Removing Specified Years
-
generate_adjustment_values()
- Generate Adjusted and Unadjusted Service Counts by Year
-
adjust_service_data()
- Adjust Service Data for Coverage Analysis
-
plot(<cd_adjustment_values>)
- Plot Adjusted vs. Unadjusted Data for Health Indicators
-
tbl_sum(<cd_adjustment_values>)
- Summary for
cd_adjustment_values
Objects
Denominator Assessment
To determine suitable population-based denominators for calculating coverage rates
-
compute_indicator_numerator()
- Compute Aggregated Numerators for Health Indicators
-
prepare_population_metrics()
- Compute Population Metrics for DHIS-2 and UN Data
-
calculate_indicator_coverage()
- Calculate Health Coverage Indicators
-
calculate_indicator_threshold_coverage()
- Calculate Threshold Coverage for Health Indicators
-
calculate_threshold()
- Calculate Dropout Coverage for Health Indicators Below a Threshold
-
plot_line_graph()
- Plot Line Graph for Multiple Series with Dynamic Y-axis Scaling
-
plot_absolute_differences()
- Plot DHIS2-Based Indicator Coverage with Different Denominators and Survey Coverage
-
plot(<cd_indicator_coverage>)
- Plot National Denominators and Coverage Indicators
-
plot(<cd_population_metrics>)
- Plot National Population or Births Metrics
-
tbl_sum(<cd_indicator_coverage>)
- Table Summary for National Coverage Estimates
-
tbl_sum(<cd_national_denominators>)
- Summarize National Denominators Data
-
calculate_coverage()
- Combine Immunization Coverage Data
-
filter_coverage()
- Filter and Reshape Coverage Data
-
plot(<cd_coverage>)
- Plot National Coverage Data
-
calculate_inequality()
- Analyze Subnational Health Coverage Data with Inequality Metrics
-
filter_inequality()
- Filter Subnational Inequality Metrics
-
plot(<cd_inequality>)
- Plot Subnational Health Coverage Analysis
-
get_mapping_data()
- Get Mapping Data for Subnational Analysis
-
get_country_shapefile()
- Retrieve Country Shapefile
-
plot(<cd_mapping>)
- Plot Subnational Mapping Data
-
equiplot()
- Create Dot Plots for Equity Analysis
-
equiplot_area()
- A Specialized Dot Plot for Area of Residence Analysis
-
equiplot_education()
- A Specialized Dot Plot for Maternal Education Analysis
-
equiplot_wealth()
- A Specialized Dot Plot for Wealth Quintile Analysis
Reporting
To document findings, generate summaries, and create exportable formats for sharing and presentation
-
dashboard()
- Launch the Dashboard Application
-
generate_report()
- Generate and Export Checks Report
-
add_outlier5std_column()
- Add Outlier Flags Based on 5-MAD Bounds
-
add_mad_med_columns()
- Add Median and MAD Columns for Indicators
-
add_missing_column()
- Add Missing Value Flags to Health Indicators
-
get_all_indicators()
- Get All Indicators
-
get_country_iso3()
- Get Country ISO3 Code
-
get_country_name()
- Get Country Name
-
get_indicator_groups()
- Get Indicator Groups
-
get_indicator_group_names()
- Get Indicator Group Names
-
get_named_indicators()
- Get Named Indicator Vector
-
list_tracer_vaccines()
- List Tracer Vaccines
-
list_vaccines()
- List All Routine Vaccine Indicators
-
list_vaccine_indicators()
- List All Vaccine and Related Coverage Indicators
-
robust_max()
- Robust Maximum Value Calculation
-
new_countdown()
- Create Countdown 2030 Data Object
-
print(<cd_data>)
- Print Method for
cd_data
Class
-
with_cd_quiet()
local_cd_quiet()
- Execute Code in Quiet Mode
-
clean_error_message()
- Clean and Validate Error Messages
-
CacheConnection
- CacheConnection Class
-
init_CacheConnection()
- Create a CacheConnection Object