Skip to contents

Data Import and Setup

To load and prepare the initial data required for analysis.

load_data()
Load Processed Countdown 2030 Data from RDS or DTA File
load_excel_data()
Load and Clean Countdown 2030 Excel Data
load_un_estimates()
Load UN Estimates
load_un_mortality_data()
Load and Filter UN Mortality Estimates
load_wuenic_data()
Load WUENIC Immunization Data
load_survey_data()
Load and Process Survey Data
load_equity_data()
Load and Filter Equity Data
save_data()
Save Processed Countdown 2030 Data to File
save_dhis2_excel()
Save DHIS2 Data to an Excel Workbook
save_dhis2_master_data()
Create a Master Dataset from DHIS2 Data
get_dhis2_hfd()
Retrieve DHIS2 Health Facility Data

Data Quality Assessment

To check the completeness and consistency of data, ensuring its readiness for analysis.

Reporting Rate

calculate_average_reporting_rate()
Reporting Rate Summary by Administrative Level
calculate_district_reporting_rate()
District-Level Reporting Rates by Year
plot(<cd_average_reporting_rate>)
Plot Reporting Rates for Subnational Units
plot(<cd_district_reporting_rate>)
Plot District Reporting Rate Summary
tbl_sum(<cd_average_reporting_rate>)
Summary for Average Reporting Rates by Year
tbl_sum(<cd_district_reporting_rate>)
Summary for District-Level Reporting Rates by Year

Date Completeness

calculate_completeness_summary()
Calculate Percentage of Non-Missing Values by Year
calculate_district_completeness_summary()
Check for Missing Values by District and Year
plot(<cd_completeness_summary>)
Plot Missing Summary
tbl_sum(<cd_completeness_summary>)
Summary for cd_completeness_summary
tbl_sum(<cd_district_completeness_summary>)
Summary for cd_district_completeness_summary

Consistency Checks

plot_comparison() plot_comparison_anc1_penta1() plot_comparison_penta1_penta3() plot_comparison_opv1_opv3()
Internal Consistency Plot Functions for Indicator Comparisons
plot_comparison(<cd_data>)
Plot Comparison with Linear Fit and R-squared

Outlier detection

calculate_outliers_summary()
Calculate Outliers Summary by Year
calculate_district_outlier_summary()
Calculate District-Level Outliers Summary by Year
list_outlier_units()
Identify Outlier Units by Month for a Given Indicator
plot(<cd_outlier>)
Plot Outlier Detection Summary
plot(<cd_outlier_list>)
Plot Outlier Series for a Single Region and Indicator
tbl_sum(<cd_outliers_summary>)
Summary for cd_outliers_summary
tbl_sum(<cd_district_outliers_summary>)
Summary for cd_district_outliers_summary

Calculate Ratios

calculate_ratios_summary()
Calculate Yearly Indicator Ratios Summary with Expected Ratios
calculate_district_ratios_summary()
Calculate District Adequacy Summary
plot(<cd_ratios_summary>)
Plot Ratios Summary for Indicator Ratios Summary Object
tbl_sum(<cd_ratios_summary>)
Summary for cd_ratios_summary Object
tbl_sum(<cd_district_ratios_summary>)
Summary for cd_district_ratios_summary Object

Overall Score

calculate_overall_score()
Calculate Overall Quality Score for Data Quality Metrics

Data Adjustment

To adjust for issues like incomplete reporting and extreme outliers, improving data quality

filter_out_years()
Filter Dataset by Removing Specified Years
generate_adjustment_values()
Generate Adjusted and Unadjusted Service Counts by Year
adjust_service_data()
Adjust Service Data for Coverage Analysis
plot(<cd_adjustment_values>)
Plot Adjusted vs. Unadjusted Data for Health Indicators
tbl_sum(<cd_adjustment_values>)
Summary for cd_adjustment_values Objects

Denominator Assessment

To determine suitable population-based denominators for calculating coverage rates

compute_indicator_numerator()
Compute Aggregated Numerators for Health Indicators
prepare_population_metrics()
Compute Population Metrics for DHIS-2 and UN Data
calculate_indicator_coverage()
Calculate Health Coverage Indicators
calculate_indicator_threshold_coverage()
Calculate Threshold Coverage for Health Indicators
calculate_threshold()
Calculate Dropout Coverage for Health Indicators Below a Threshold
calculate_derived_coverage()
Generate Coverage Data with Derived Denominators
plot_line_graph()
Plot Line Graph for Multiple Series with Dynamic Y-axis Scaling
plot_absolute_differences()
Plot DHIS2-Based Indicator Coverage with Different Denominators and Survey Coverage
plot(<cd_indicator_coverage>)
Plot National Denominators and Coverage Indicators
plot(<cd_population_metrics>)
Plot National Population or Births Metrics
plot(<cd_derived_coverage>)
Plot Derived vs Traditional Coverage Over Time
tbl_sum(<cd_indicator_coverage>)
Table Summary for National Coverage Estimates
tbl_sum(<cd_national_denominators>)
Summarize National Denominators Data

Calculate Coverage

To determine the coverage of various indicators

calculate_coverage()
Combine Immunization Coverage Data
filter_coverage()
Filter and Reshape Coverage Data
plot(<cd_coverage>)
Plot National Coverage Data
calculate_inequality()
Analyze Subnational Health Coverage Data with Inequality Metrics
filter_inequality()
Filter Subnational Inequality Metrics
plot(<cd_inequality>)
Plot Subnational Health Coverage Analysis
get_mapping_data()
Get Mapping Data for Subnational Analysis
get_country_shapefile()
Retrieve Country Shapefile
plot(<cd_mapping>)
Plot Subnational Mapping Data
equiplot()
Create Dot Plots for Equity Analysis
equiplot_area()
A Specialized Dot Plot for Area of Residence Analysis
equiplot_education()
A Specialized Dot Plot for Maternal Education Analysis
equiplot_wealth()
A Specialized Dot Plot for Wealth Quintile Analysis

Calculate Mortality Metrics

To calculate the quality of mortality data

create_mortality_summary()
Create Mortality Summary Object
create_mortality_ratios()
Extract Latest Mortality Ratios for UN Comparison
plot(<cd_mortality_rate>)
Plot Mortality Rate Indicators
plot(<cd_mortality_ratio>)
Plot Completeness of Facility Reporting Ratios

Calculate Health Utilization Metrics

To Calculate National and Sub-national metric of how services are Utilize

compute_service_utilization()
Compute Service Utilization Metrics
get_excel_version()
Format Service Utilization Data for Excel Export
plot(<cd_service_utilization>)
Plot Service Utilization Indicators

Calculate Health System Metrics

calculate_health_system_metrics()
Calculate Health System Metrics
calculate_health_system_comparison()
Compare Health System Metrics Across Levels
plot(<cd_health_system_metric>)
Plot Health Metrics for Admin 1 Units
plot(<cd_health_system_comparison>)
Compare District vs Admin 1 Health Metrics
plot_national_health_metric()
Plot National Health System Metrics

Reporting

To document findings, generate summaries, and create exportable formats for sharing and presentation

dashboard()
Launch the Dashboard Application
generate_report()
Generate and Export Checks Report

Other Functions

add_outlier5std_column()
Add Outlier Flags Based on 5-MAD Bounds
add_mad_med_columns()
Add Median and MAD Columns for Indicators
add_missing_column()
Add Missing Value Flags to Health Indicators
get_all_indicators()
Get All Indicators
get_country_iso3()
Get Country ISO3 Code
get_country_name()
Get Country Name
get_indicator_groups()
Get Indicator Groups
get_indicator_group_names()
Get Indicator Group Names
get_named_indicators()
Get Named Indicator Vector
get_population_column()
Get Population Denominator Column Based on Indicator Only
get_indicator_without_opd_ipd()
Get Indicators excluding indicators without denominator
get_admin_columns()
Get Grouping Columns by Administrative Level
robust_max()
Robust Maximum Value Calculation
new_countdown()
Create Countdown 2030 Data Object
print(<cd_data>)
Print Method for cd_data Class
with_cd_quiet() local_cd_quiet()
Execute Code in Quiet Mode
clean_error_message()
Clean and Validate Error Messages
CacheConnection
CacheConnection Class
init_CacheConnection()
Create a CacheConnection Object